Turbulent Two-Dimensional Jet

Graduate Students: R.H. Bhana, L. Lekoko, B. Mugwangwavari Supervisors: Prof. D.P. Mason, E. Mubai, K. Born

MISGSA2021

Kロトメ部トメミトメミト ミニの女々

Turbulent Flow

- \triangleright Turbulent Flow: Irregular or random fluctuation (mixing or rotational motion) that is superimposed on the mainstream
- \blacktriangleright Feature of of fluid flow and not of a fluid
- \blacktriangleright Turbulent flow = mean flow + random fluctuations with zero mean

$$
V_i(x, y, t) = \overline{V}_i(x, y) + V'_i(x, y, t)
$$

$$
\overline{\overline{V}}_i = \overline{V}_i, \overline{V'_i} = 0, \overline{V'_i V'_j} \neq 0
$$
 (1)

Aims and Objectives

- \blacktriangleright Model of sneeze
- \blacktriangleright Fit parameter values for a sneeze
- \blacktriangleright Range of jet in downstream x-direction
- \blacktriangleright Range of jet in transverse y-direction
- \blacktriangleright Estimates of Social Distancing
- \triangleright Model effect of mask by changing value of J

KORKARYKERKER OQO

Model of a Sneeze

K ロ > K @ > K 할 > K 할 > H 할 + 9 Q Q ~

Governing Equations

 \blacktriangleright Reynolds averaged equations in the boundary layer approximation:

$$
\overline{V_x} \frac{\partial \overline{V}_x}{\partial x} + \overline{V}_y \frac{\partial \overline{V}_x}{\partial y} = \frac{\partial}{\partial y} \left[(\nu + \nu_T) \frac{\partial \overline{V}_x}{\partial y} \right]
$$
(2)

$$
\nu_T = \ell^2(x) \left| \frac{\partial \overline{V}_x}{\partial y} \right|
$$
 (3)

 \triangleright Conservation of Mass:

$$
\frac{\partial \overline{V}_x}{\partial x} + \frac{\partial \overline{V}_y}{\partial y} = 0 \tag{4}
$$

Two-Dimensional Boundary Layer Equation

 \blacktriangleright The two-dimensional boundary equation is:

$$
\frac{\partial \Psi}{\partial y} \frac{\partial^2 \Psi}{\partial x \partial y} - \frac{\partial \Psi}{\partial x} \frac{\partial^2 \Psi}{\partial y^2} = \frac{\partial}{\partial y} \left[\left(\nu - \ell^2(x) \frac{\partial^2 \Psi}{\partial y^2} \right) \frac{\partial^2 \Psi}{\partial y^2} \right],
$$
(5)

$$
\overline{V}_x = \frac{\partial \Psi}{\partial y}, \ \overline{V}_y = -\frac{\partial \Psi}{\partial x}
$$

KID KARA KE KAEK LE I YOKO

Proving Invariance

 \blacktriangleright Scaling transformations:

$$
\overline{x} = \lambda^a x, \ \overline{y} = \lambda^b y, \ \overline{\Psi} = \lambda^c \Psi, \ \overline{\ell} = \lambda^m \ell \tag{6}
$$

 \blacktriangleright Equation [\(5\)](#page-6-0) is invariant,

$$
\frac{\partial \overline{\Psi}}{\partial \overline{y}} \frac{\partial^2 \overline{\Psi}}{\partial \overline{x} \partial \overline{y}} - \frac{\partial \overline{\Psi}}{\partial \overline{x}} \frac{\partial^2 \overline{\Psi}}{\partial \overline{y}^2} = \frac{\partial}{\partial \overline{y}} \bigg[\left(\nu - \overline{\ell}^2(\overline{x}) \frac{\partial^2 \overline{\Psi}}{\partial \overline{y}^2} \right) \frac{\partial^2 \overline{\Psi}}{\partial \overline{y}^2} \bigg] \qquad (7)
$$

 \blacktriangleright Provided

$$
c = a - b, \ m = \frac{1}{2}(3b - a)
$$
 (8)

General Solution of Streamline Function

 \triangleright Suppose [\(5\)](#page-6-0) has a general solution:

$$
\Psi = f(x, y) \tag{9}
$$

 \triangleright With corresponding invariant solution:

$$
\overline{\Psi} = f(\overline{x}, \overline{y}) \tag{10}
$$

 \blacktriangleright Streamline function:

$$
\Psi(x, y) = x^{\beta} F(\xi), \ \beta = \frac{c}{a} \tag{11}
$$

$$
\xi = yx^{-\alpha}, \ \alpha = \frac{b}{a} \tag{12}
$$

General solution of Prandtl's Mixing Length

 \blacktriangleright Suppose a solution of the form:

$$
\ell = h(x) \tag{13}
$$

 \triangleright With corresponding invariant solution:

$$
\overline{\ell} = h(\overline{x}) \tag{14}
$$

 \blacktriangleright Prandtl's mixing length:

$$
\ell(x) = \ell_0 x^{\frac{m}{a}} \tag{15}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q Q*

 \triangleright Note that ℓ_0 is a constant

Momentum Flux

 \blacktriangleright Given by

$$
J = 2\rho \int_0^{b(x)} \overline{V}_x^2(x, y) dy
$$
 (16)

$$
=2\rho\int_{0}^{b(x)}\left(\frac{\partial\Psi}{\partial y}\right)^{2}dy\tag{17}
$$

 \triangleright Since *J* = *constant independent of x*:

$$
\alpha = 2\beta,\tag{18}
$$

K ロ > K @ > K 할 > K 할 > H 할 + 9 Q Q ~

$$
b(x) = \xi_b x^{\alpha} \tag{19}
$$

 \blacktriangleright Note that ξ_b is a constant

Case 1: $\nu \neq 0$, $\alpha = \frac{2}{3}$ 3

- \blacktriangleright Three unknowns, two equations
- \blacktriangleright Parameter values:

$$
\alpha = \frac{2}{3}, \ \beta = \frac{1}{3}, \ \frac{m}{a} = \frac{1}{2} \tag{20}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q Q*

 \blacktriangleright Hence,

$$
\Psi(x, y) = x^{\frac{1}{3}} F(\xi), \ \xi = y x^{-\frac{2}{3}}, \ \ell(x) = \ell_0 x^{\frac{1}{2}}, \ b(x) = \xi_b x^{\frac{2}{3}} \tag{21}
$$

 \blacktriangleright Prandtl's hypothesis is not satisfied

Case 2:
$$
\nu = 0
$$
, $\alpha = 1$

$$
\blacktriangleright
$$
 Three unknowns, one equation

 \blacktriangleright Satisfying Prandtl's hypothesis

$$
\alpha = 1 \tag{22}
$$

Kロ > K部 > Kミ > Kミ > ミミーのQQ

\blacktriangleright Hence,

$$
\Psi(x, y) = x^{\frac{1}{2}} F(\xi), \ \xi = y x^{-1}, \ \ell(x) = \ell_0 \ x, \ b(x) = \xi_b \ x \tag{23}
$$

Plot of the Boundary Equation $b(x)$ for Different Parameters of α

イロト イ部 トイモト イモト È $2Q$

Velocities

 \triangleright ODE must be independent of x and y. Rewrite similarity solution i.t.o ξ and *x*

 $y = \xi x^{\alpha}$

$$
V_x(x, y) = \frac{\partial \Psi}{\partial y}
$$

= $x^{\frac{-\alpha}{2}} \frac{dF}{d\xi}$ (25)

$$
V_y(x, y) = -\frac{\partial \Psi}{\partial x}
$$

= $\frac{\alpha}{2} x^{\frac{\alpha}{2} - 1} \left[-F(\xi) + 2\xi \frac{dF}{d\xi} \right]$ (26)

(24)

Boundary Conditions

$$
\frac{\partial \overline{V}_x}{\partial y}(x,0) = 0 \text{ (Turning point)}
$$
\n(27)

$$
\overline{V}_y(x,0) = 0 \ (No \ cavities) \tag{28}
$$

$$
\frac{\partial \overline{V}_x}{\partial y}(x, b(x)) = 0
$$
 (Zero kinematic eddy viscosity) (29)

$$
\overline{V}_x(x, b(x)) = 0 \text{ (Limit tends to zero)}
$$
\n(30)

Ordinary Differential Equations (ODEs)

$$
\triangleright \nu \neq 0, \alpha = \frac{2}{3}:
$$

$$
\ell_0^2 \left(\frac{d^2 F}{d\xi^2}\right)^2 - \nu \frac{d^2 F}{d\xi^2} - \frac{1}{3} F \frac{dF}{d\xi} = 0
$$
 (31)

 \blacktriangleright $\nu = 0$, α is arbitrary

$$
\ell_0^2 \left(\frac{d^2 F}{d \xi^2} \right)^2 - \frac{\alpha}{2} F \frac{dF}{d \xi} = 0 \tag{32}
$$

K ロ > K @ > K 할 > K 할 > H 할 + 9 Q Q ~

Analytical Solution for Case 2

 \blacktriangleright Equation [\(32\)](#page-16-0) is solved analytically in order to determine the parameters for the velocity equations

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q Q*

Find values for the constants, ξ_b , and K

Entrainment

• At the boundary
$$
y = b(x) = \xi_b x^{\alpha}
$$
:

$$
\xi_b = \frac{4\pi}{3\sqrt{3}} \left(\frac{2\ell_0^2}{\alpha}\right)^{\frac{1}{3}}\tag{33}
$$

Boudary of a Jet

 \blacktriangleright Determining the Value for K:

$$
K = \left(\frac{J}{2\rho}\right)^{\frac{1}{2}} \left(\frac{2\ell_0^2}{\alpha}\right)^{\frac{1}{6}} \frac{\left[\Gamma\left(\frac{1}{3}\right)\right]^{\frac{1}{2}}}{\Gamma\left(\frac{2}{3}\right)}
$$
(34)

 \blacktriangleright Entrainment:

$$
v_{y}(x,b(x)) = -\frac{\alpha}{2}x^{\left(\frac{\alpha}{2}-1\right)}K
$$
\n(35)

K ロ > K @ > K 할 > K 할 > H 할 + 9 Q Q ~

Velocity in the *x*-direction

At the centerline of the Jet $y = 0$:

 \blacktriangleright Velocity

$$
v_x(x,0) = \left(\frac{\alpha}{2\ell_0^2}\right)^{\frac{1}{3}} K x^{-\frac{\alpha}{2}}
$$
 (36)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 . K 9 Q @

Numerical Solution

- \blacktriangleright Equation [\(31\)](#page-16-1) is solved numerically
- \triangleright Quadratic form and making the second derivative the subject of the formula

KORKARYKERKER OQO

- \blacktriangleright Shooting method
- \triangleright Shooting towards a conserved quantity and not a derivative

Expectation

イロンス 伊 メスミンス ミンニ ミー 299