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Turbulent Flow

I Turbulent Flow: Irregular or random fluctuation (mixing or
rotational motion) that is superimposed on the mainstream

I Feature of of fluid flow and not of a fluid
I Turbulent flow = mean flow + random fluctuations with zero

mean
Vi(x, y, t) = V i(x, y) + V

′

i (x, y, t) (1)

V i = V i,V
′
i = 0,V ′i V ′j 6= 0



Aims and Objectives

I Model of sneeze
I Fit parameter values for a sneeze
I Range of jet in downstream x-direction
I Range of jet in transverse y-direction
I Estimates of Social Distancing
I Model effect of mask by changing value of J



Model of a Sneeze



Governing Equations

I Reynolds averaged equations in the boundary layer
approximation:
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I Conservation of Mass:
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Two-Dimensional Boundary Layer Equation

I The two-dimensional boundary equation is:
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Proving Invariance

I Scaling transformations:

x = λax, y = λby, Ψ = λcΨ, ` = λm` (6)

I Equation (5) is invariant,
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I Provided
c = a− b, m =

1
2
(
3b− a

)
(8)



General Solution of Streamline Function

I Suppose (5) has a general solution:

Ψ = f (x, y) (9)

I With corresponding invariant solution:

Ψ = f (x, y) (10)

I Streamline function:

Ψ(x, y) = xβF(ξ), β =
c
a

(11)

ξ = yx−α, α =
b
a

(12)



General solution of Prandtl’s Mixing Length

I Suppose a solution of the form:

` = h(x) (13)

I With corresponding invariant solution:

` = h(x) (14)

I Prandtl’s mixing length:

`(x) = `0x
m
a (15)

I Note that `0 is a constant



Momentum Flux

I Given by

J = 2ρ
∫ b(x)

0
V2

x(x, y)dy (16)

= 2ρ
∫ b(x)

0

(
∂Ψ

∂y

)2

dy (17)

I Since J = constant independent of x:

α = 2β, (18)
b(x) = ξb xα (19)

I Note that ξb is a constant



Case 1: ν 6= 0, α = 2
3

I Three unknowns, two equations
I Parameter values:

α =
2
3
, β =

1
3
,

m
a

=
1
2

(20)

I Hence,

Ψ(x, y) = x
1
3 F(ξ), ξ = yx−

2
3 , `(x) = `0 x

1
2 , b(x) = ξb x

2
3 (21)

I Prandtl’s hypothesis is not satisfied



Case 2: ν = 0, α = 1

I Three unknowns, one equation
I Satisfying Prandtl’s hypothesis

α = 1 (22)

I Hence,

Ψ(x, y) = x
1
2 F(ξ), ξ = yx−1, `(x) = `0 x, b(x) = ξb x (23)



Plot of the Boundary Equation b(x) for Different Parameters
of α



Velocities

I ODE must be independent of x and y. Rewrite similarity solution
i.t.o ξ and x

y = ξxα (24)
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2
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(26)



Boundary Conditions

∂Vx

∂y
(x, 0) = 0 (Turning point) (27)

Vy(x, 0) = 0 (No cavities) (28)

∂Vx

∂y
(x, b(x)) = 0 (Zero kinematic eddy viscosity) (29)

Vx(x, b(x)) = 0 (Limit tends to zero) (30)



Ordinary Differential Equations (ODEs)

I ν 6= 0, α = 2
3 :
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(
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= 0 (31)

I ν = 0, α is arbitrary
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Analytical Solution for Case 2

I Equation (32) is solved analytically in order to determine the
parameters for the velocity equations

I Find values for the constants, ξb, and K



Entrainment

I At the boundary y = b(x) = ξbxα:
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3
√

3
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α

)1
3 (33)

Boudary of a Jet
I Determining the Value for K:
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I Entrainment:

vy(x, b(x)) = −α
2

x

(
α

2
−1

)
K (35)



Velocity in the x-direction

I At the centerline of the Jet y = 0:
I Velocity

vx(x, 0) =

(
α

2`2
0

)1
3 Kx

−
α

2 (36)



Numerical Solution

I Equation (31) is solved numerically
I Quadratic form and making the second derivative the subject of

the formula
I Shooting method
I Shooting towards a conserved quantity and not a derivative



Expectation


