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Turbulent Flow

» Turbulent Flow: Irregular or random fluctuation (mixing or
rotational motion) that is superimposed on the mainstream

» Feature of of fluid flow and not of a fluid

» Turbulent flow = mean flow + random fluctuations with zero
mean




Aims and Objectives

Model of sneeze

Fit parameter values for a sneeze

Range of jet in downstream x-direction
Range of jet in transverse y-direction
Estimates of Social Distancing

Model effect of mask by changing value of J
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Model of a Sneeze

MODEL OF SNEEZE
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Governing Equations

» Reynolds averaged equations in the boundary layer
approximation:
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» Conservation of Mass:
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Two-Dimensional Boundary Layer Equation

» The two-dimensional boundary equation is:
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Proving Invariance

» Scaling transformations:
T=Xx, y= Ny, U=\, 7=\ (6)

» Equation (5) is invariant,
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General Solution of Streamline Function

» Suppose (5) has a general solution:

v :f(xvy)

» With corresponding invariant solution:
¥ =f(x,5)

» Streamline function:

U(xy) =x7F (), ==



General solution of Prandtl’s Mixing Length

» Suppose a solution of the form:
£ = h(x) (13)
» With corresponding invariant solution:
{=h(x) (14)
» Prandtil’s mixing length:
((x) = Loxa (15)
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Note that ¢, is a constant



Momentum Flux

» Given by

» Since J = constant independent of x:

a =24,
b(x) = & x*

» Note that &, is a constant
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Three unknowns, two equations
Parameter values:

v
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Hence,

U(x,y) = xTF(€), £ =+

v

Prandtl’s hypothesis is not satisfied



Case2: v=0,a=1

» Three unknowns, one equation
» Satisfying Prandtl’s hypothesis

a=1
» Hence,

U(x,y) = x2F(), € =y !, £(x) = by x, b(x) = & x



Plot of the Boundary Equation b(x) for Different Parameters
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Velocities

» ODE must be independent of x and y. Rewrite similarity solution
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Boundary Conditions

ov.
dy
Vy(x,0) = 0 (No cavities)

(x,0) = O (Turning point)

o,
Jy
V.(x,b(x)) = 0 (Limit tends to zero)

(x,b(x)) = 0 (Zero kinematic eddy viscosity)



Ordinary Differential Equations (ODEs)
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» v =0, a is arbitrary
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Analytical Solution for Case 2

» Equation (32) is solved analytically in order to determine the
parameters for the velocity equations

» Find values for the constants, &,, and K



Entrainment
> At the boundary y = b(x) = &x*:

1
a- 2 (28);
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Boudary of a Jet
» Determining the Value for K:

» Entrainment:

(33)



Velocity in the x-direction

» At the centerline of the Jet y = 0:
» Velocity



Numerical Solution

v

Equation (31) is solved numerically

Quadratic form and making the second derivative the subject of
the formula

Shooting method
Shooting towards a conserved quantity and not a derivative
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Expectation
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